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Summary
Background Biomarker-based risk predictions of dementia in people with mild cognitive impairment are highly 
relevant for care planning and to select patients for treatment when disease-modifying drugs become available. We 
aimed to establish robust prediction models of disease progression in people at risk of dementia.

Methods In this modelling study, we included people with mild cognitive impairment (MCI) from single-centre and 
multicentre cohorts in Europe and North America: the European Medical Information Framework for Alzheimer’s 
Disease (EMIF-AD; n=883), Alzheimer’s Disease Neuroimaging Initiative (ADNI; n=829), Amsterdam Dementia 
Cohort (ADC; n=666), and the Swedish BioFINDER study (n=233). Inclusion criteria were a baseline diagnosis of 
MCI, at least 6 months of follow-up, and availability of a baseline Mini-Mental State Examination (MMSE) and MRI 
or CSF biomarker assessment. The primary endpoint was clinical progression to any type of dementia. We evaluated 
performance of previously developed risk prediction models—a demographics model, a hippocampal volume model, 
and a CSF biomarkers model—by evaluating them across cohorts, incorporating different biomarker measurement 
methods, and determining prognostic performance with Harrell’s C statistic. We then updated the models by 
re-estimating parameters with and without centre-specific effects and evaluated model calibration by comparing 
observed and expected survival. Finally, we constructed a model combining markers for amyloid deposition, tauopathy, 
and neurodegeneration (ATN), in accordance with the National Institute on Aging and Alzheimer’s Association 
research framework.

Findings We included all 2611 individuals with MCI in the four cohorts, 1007 (39%) of whom progressed to dementia. 
The validated demographics model (Harrell’s C 0·62, 95% CI 0·59–0·65), validated hippocampal volume model 
(0·67, 0·62–0·72), and updated CSF biomarkers model (0·72, 0·68–0·74) had adequate prognostic performance 
across cohorts and were well calibrated. The newly constructed ATN model had the highest performance (0·74, 
0·71–0·76).

Interpretation We generated risk models that are robust across cohorts, which adds to their potential clinical 
applicability. The models could aid clinicians in the interpretation of CSF biomarker and hippocampal volume results 
in individuals with MCI, and help research and clinical settings to prepare for a future of precision medicine in 
Alzheimer’s disease. Future research should focus on the clinical utility of the models, particularly if their use affects 
participants’ understanding, emotional wellbeing, and behaviour.
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Copyright © 2019 Elsevier Ltd. All rights reserved.

Introduction
People with mild cognitive impairment (MCI) have an 
increased risk of progressing to dementia, most often 
due to Alzheimer’s disease.1 Roughly half of individuals 
with MCI develop dementia in the course of 3 years.2 
The other half remain stable or revert to normal levels 
of cognition. As a result, these individuals live with 
uncertainty for a long time. In a former study on the 
communication of diagnosis, people with MCI indicated 
they preferred more information on the future course of 
their disease.3 Diagnostic tests, such as MRI measures or 

biomarkers in CSF, could help to establish a more 
accurate prognosis.4–7

Practice guidelines for MCI from the American 
Academy of Neurology acknowledge that biomarker 
research in Alzheimer’s disease is a rapidly moving field 
and that biomarker evidence in MCI might be particularly 
important for prognosis.8 At the same time, these guide
lines state that biomarkers are not yet ready for clinical 
implementation. This was also confirmed by the Geneva 
Roadmap.9 Although there is a wealth of literature 
show  ing the prognostic value of CSF and MRI biomarkers 
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on a group level,5–7 these studies do not allow direct 
translation to the individual. For example, the prognostic 
value of biomarkers might be influenced by characteristics 
such as age, sex, and cognitive status. To extract maximal 
information from each bio marker, the results should be 
interpreted in the context of these characteristics. How
ever, these characteristics are often omitted in prognostic 
research. Furthermore, recom menda tions on how to 
handle conflicting and borderline results are lacking.9 In 
this context, the novel National Institute on Aging 
and Alzheimer’s Association (NIAAA) research frame
work that defines Alzheimer’s disease as a biological 
construct is of great interest. The research frame 
work proposes to use biomarkers for amyloid, tau, and 
neurodegeneration (ATN) to classify patients. For MCI, it 
is unknown how the use of this framework informs 
predictions.10

In a previous study,4 we constructed proofofprinciple 
biomarkerbased prognostic models that allow risk pre
diction on the individual level. These models, which were 
based on a homogeneous, singlecentre cohort and we 
internally and externally validated, provide probabilities of 
progression to Alzheimer’s disease dementia in the course 
of 1 year or 3 years of followup for any given value of each 
biomarker. To successfully enter clinical practice, however, 
generalisability has to be shown by extensive external 
validation.11 A prerequisite for generalis ability is that the 
models are able to accommodate different biomarker 

measurement methods and have value for differ  ent 
cohorts, beyond the ones they were initi ally developed in.9 
Taking our previous risk prediction models as a starting 
point, the aim of this study was to estab  lish robust, 
generalisable prediction models. Addi tionally, we aimed to 
construct an ATNmodel that would allow the use of this 
framework to inform predictions.

Methods
Study design and participants
We included individuals with MCI from one singlecentre 
and three multicentre cohorts in Europe and America: 
the Amsterdam Dementia Cohort12 (ADC; 666 partici
pants), the Alzheimer’s Disease Neuroimaging Initiative13 
(ADNI; 829 participants), the Biomarkers For Identifying 
Neurodegenerative Disorders Early and Reliably Study14 
(BioFINDER; 233 participants) and the collaborative co
horts of the European Medical Information Frame    work for 
Alzheimer’s disease (EMIFAD; 883 partici pants) composed 
of the following studies: DESCRIPA,15 AddNeuroMed,16 
German Dementia Competence Net work (DCN),17 IMAP,18 
European Alzheimer’s Disease Consortium (EADC)PET,19 
Brescia,20 Coimbra,21 Kuopio,22 and Lisbon.23 Cohort char
acteristics are sum marised in table 1, with char acteristics 
of the sep arate EMIF cohorts given in the appendix 
(pp 2–3). ADC and BioFINDER are memory clinicbased 
cohorts and participants were reevaluated on a yearly 
basis. ADNI is a research cohort and diagnosis is evaluated 

Research in context

Evidence before this study
We searched PubMed, without language restriction, for articles 
published up to Nov 1, 2018, on prognosis in people with mild 
cognitive impairment (MCI), at an individual level, on the basis 
of biomarker evidence, using the terms “([mild cognitive 
impairment] AND [prognosis] OR [prognostic factor] OR 
[prediction model])”. Specifically, we focused on prognosis in 
MCI based on biomarker evidence—ie, atrophy on MRI and 
amyloid β, total tau, and phosphorylated tau in CSF. A wealth of 
liturature was available on the prognostic performance of these 
(combinations of) biomarkers in individuals with MCI. However, 
these studies reported findings at the group level, which do not 
directly translate to the individual. Our previous study was the 
only study that allowed the interpretation of biomarkers on an 
individual level in people with MCI. For this validation study, 
we took our previously constructed biomarker-based 
prognostic models that allow risk prediction on the individual 
level as a starting point for our analysis. However, our proof-of-
principle models were based on a homogeneous, single-centre 
cohort and did not accommodate different cohorts and 
biomarker measurement methods. Moreover, prediction 
beyond 3 years was not reliable.

Added value of this study
In the current study of 2611 individuals with MCI from 
single-centre and multicentre cohorts in Europe and North 

America, we validated and updated, according to the TRIPOD 
guidelines, multivariable, biomarker-based models for the 
prediction of dementia. We showed that the models had good 
generalisability and were well calibrated up to more than 
5 years of follow-up. Moreover, the models accommodate 
different biomarker measurement methods. Additionally, 
we constructed a model combining measures of amyloid, 
tau, and neurodegeneration to provide predictions in 
accordance with the most recent research guidelines for 
Alzheimer’s disease.

Implications of all the available evidence
We have shown the generalisability and robustness of the 
predictions. Our models are freely available for academic use 
upon request. The models allow clinical researchers to 
estimate—for any given combination of biomarker 
results—the probability of progression to dementia within a 
given period of time. Our models could facilitate a more timely 
and accurate diagnosis and prognosis of MCI, which is of high 
importance at the individual level even in the absence of 
specific therapies, as this is the starting point to plan and 
organise care.
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at 3–12month intervals. EMIFAD substudy followup is 
reported in the appendix (pp 2–3).

For this study, inclusion criteria were a base line diag
nosis of MCI, at least 6 months of followup, and availability 
of a MiniMental State Examination (MMSE) and MRI or 
CSF biomarker assessments at baseline. All participants 
gave written informed consent for participation in the 
original studies and for reuse of the data, and institutional 
review boards approved the study. This study is reported in 
accordance with the Transparent Reporting of a multi
variable pre diction model for Individual Prognosis Or 
Diagnosis (TRIPOD) guideline.24

Original prediction models
The original prediction models were constructed using 
Cox proportional hazards modelling in the ADC.4 In 
the current study, we validated the following previously 
published models: a demographics model, a hippocampal 
volume model, and a CSF biomarkers model.4 Variables 
included in the models and corresponding estimates are 
shown in the appendix (p 4). In short, the demographics 
model included age, sex, and MMSE; the hippocampal 
volume model included hippocampal volume (cm³), age, 
and MMSE; and the CSF biomarkers model included 
amyloid β (1–42), total tau, MMSE, and an interaction 
term between amyloid β and total tau. As whole brain 
volume was not available in one cohort (EMIF), we were 
unable to assess the performance of a model combining 
CSF and MRI features (ie, a combined model). In the 
original study, the prognostic models showed moderate to 
good discrim ination as shown with Harrell’s C statistic, a 

ADC (n=666) ADNI (n=829) EMIF-AD (n=883) BioFINDER (n=233)

Baseline data collection period 1995–2014 2004–14 Varied per substudy* 2010–15

Study design Single-centre 
longitudinal cohort 
study

Multicentre longitudinal cohort 
study

Multicentre longitudinal 
cohort study

Multicentre longitudinal 
cohort study

Setting Tertiary memory clinic Research Memory clinics Memory clinics

Inclusion criteria Referred to memory 
clinic, does not fulfil 
criteria for dementia

Memory complaints verified by 
study partner, abnormal memory 
functioning, MMSE of 24–30, 
clinical dementia rating scale of 
0·5, does not fulfil criteria for 
dementia

Varied per substudy* Referred to memory clinic, 
age 60–80 years, baseline 
MMSE of 24–30, does not 
fulfil criteria for dementia

Participants who developed 
dementia

288 (43%) 319 (38%) 272 (31%) 128 (55%)

Follow-up Clinical follow-up every 
12 months

3–12-month interval Varied per substudy* Every 12 months for at least 
6 years

MRI available 539 (81%) 705 (85%) 727 (82%) 233 (100%)

MRI quantification method FSL-FIRST, Freesurfer 
version 5.3

Freesurfer version 5.3 Varied per substudy* Freesurfer version 5.3

CSF biomarkers available 485 (73%) 558 (67%) 366 (41%) 221 (95%)

CSF platform Innotest Luminex and Elecsys Innotest Innotest

ADC=Amsterdam Dementia Cohort. ADNI= Alzheimer’s Disease Neuroimaging Initiative. EMIF-AD=European Medical Information Framework for Alzheimer’s Disease. 
MMSE=Mini-Mental State Examination. *For substudy details, see appendix pp 2–3.

Table 1: Characteristics of the cohorts included in validation analyses

2611 participants in total sample
 666 from ADC cohort
 829 from ADNI cohort
 233 from BioFINDER
 833 from EMIF-AD

965 excluded from validation analyses 
 due to overlap with original study
 666 from ADC cohort
 299 from ADNI cohort

1646 in validation sample for original models

1646 complete cases included 
 in demographics model 
 validation analysis

1453 complete cases included
 in hippocampal volume
 model validation analysis

1008 complete cases included
 in CSF biomarkers model 
           validation analysis

2611 in sample used for updated original
 models and ATN model

2611 complete cases
 used in the
 updated
 demographics
 model

2042 complete cases
 used in the
 updated
 hippocampal
 volume model

1617 complete cases
 used in the
 updated
 CSF biomarkers
            model

1264 complete cases
 used in the
 ATN model

Figure 1: Flow diagram of participants included in validation analyses and model updates
ADC=Amsterdam Dementia Cohort. ADNI=Alzheimer’s Disease Neuroimaging Initiative. CSF=cerebrospinal fluid. 
EMIF-AD=European Medical Information Framework.
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rank concordance statistic that measures the proportion 
of participant pairs in which predictions and outcomes 
are concordant (demographics model 0·59 [95% CI 
0·54–0·64], hippo campal volume model 0·73 [0·66–0·80], 
and CSF biomarkers model 0·67 [0·67–0·81]).4 External 
validation in ADNI2,25 the third wave of the ADNI project 
with the primary goal to develop biomarkers as predictors 
of cognitive decline, showed robustness of all models 
(Harrell’s C for the demographics model 0·67 [0·60–0·74], 
hippo campal volume model 0·73 [0·66–0·80], and CSF 
biomarkers model 0·74 [0·67–0·81]).4

Part of the ADNI sample was used in the original 
study; we therefore excluded these participants from 
the validation analyses but included them in the model 
update.

Predictors
The following baseline predictors were available in all 
cohorts: demographic characteristics (age and sex), MMSE 
score, CSF biomarkers (amyloid β, total tau, and phos
phoryl  ated tau), and hippocampal volume. The distrib
utions of these predictors are shown across the different 
cohorts in the appendix (p 5).

Different methods were used across cohorts to analyse 
CSF and quantify hippocampal volume (platforms are 
listed in table 1). Because absolute values of both CSF 
concentrations and volumetric MRI measures varied 
across methods, we bridged CSF and volumetric MRI 
data when possible. A detailed description of this bridging 
analysis is provided in the appendix (pp 6–7).

Outcomes
The primary outcome was clinical progression to any type 
of dementia at any time. In a secondary analysis, we 
validated all models with Alzheimer’s disease dementia 
as the outcome.

Statistical analysis
We validated and updated our biomarkerbased prediction 
models in four steps. First, model performances of the 
originally developed models were assessed in all cohorts 
with Harrell’s C statistic, with 95% CIs calculated with 
the somersd package in STATA. Model perform ances 
were pooled. Second, we updated the models by re
estimating parameters with and without centrespecific 
effects to evaluate whether we could safely omit the 
adjustment for centre, which would increase gen eralisa
bility. In an additional set of analyses, we tested whether 
centrespecific effects were confounded by measurement 
methods for MRI and CSF (appendix pp 10–11). Moreover, 
we replaced total tau by phosphorylated tau in the CSF 
biomarkers model according to NIAAA criteria. We 
chose the original models as final models if they 
performed similarly (ie, had overlapping 95% CIs) to the 
updated models. In the CSF biomarkers model, our 
baseline choice was the updated model with phos
phorylated tau to align with NIAAA criteria. If the 
performance of reestimated models with and without 
centreeffects performed similarly, then we favoured 
models without centrespecific effects to increase gen
eralisability. Third, we estimated a model including 

Original sample New validation sample

ADC, Netherlands 
(n=485)

ADNI-2, USA 
(n=299)

ADNI, USA 
(n=530)

EMIF-AD, Europe 
(n=883)

BioFINDER, Sweden 
(n=233)

Follow-up time, years 2·4 (1·6) 2·6 (1·4) 3·3 (2·4) 2·2 (1·1) 2·3 (1·3)

Number of participants progressing to dementia 243 (50%) 88 (29%) 231 (44%) 272 (31%) 128 (55%)

Alzheimer’s disease dementia 195 (40%) 85 (28%) 223 (42%) 218 (25%) 87 (37%)

Other types of dementia 48 (10%) 3 (1%) 8 (2%) 54 (6%) 41 (18%)

Age, years 67 (8) 71 (7) 73 (8) 69 (8) 71 (5)

Sex

Female 192 (40%) 132 (44%) 204 (38%) 461 (52%) 97 (42%)

Male 293 (60%) 167 (56%) 326 (62%) 422 (48%) 136 (58%)

MMSE 27 (2) 28 (2) 27 (2) 27 (2) 27 (2)

Hippocampal volume, cm³ 6·9 (1·1)* 6·9 (1·1) 6·6 (1·1) 0·02 (0·99)† 6·7 (1·2)

CSF biomarkers, pg/ML

Amyloid β 876 (547)* 872 (322)* 990 (571) 913 (603) 635 (407)

Total tau 256 (141)* 280 (131)* 293 (126) 230 (111) 222 (80)

Phosphorylated tau 27 (16) 27 (15) 29 (15) 25 (16) 25 (14)

Data are n (%) or mean (SD). Note that, for the ADC cohort, we present the characteristics of the original sample. For the current study, 181 new participants, of whom 
(25%) progressed, were included, making the total sample size 666 participants. ADC=Amsterdam Dementia Cohort. ADNI=Alzheimer’s Disease Neuroimaging Initiative. 
EMIF-AD=European Medical Information Framework for Alzheimer’s disease. MMSE=Mini-Mental State Examination. *Values are bridged and therefore do not correspond 
with the values from the original paper. †Hippocampal volume in the EMIF cohort was measured with different techniques than FSL-FIRST or Freesurfer; therefore, the values 
were not bridged but converted to Z scores.

Table 2: Demographic and clinical characteristics of participants in the cohorts included in validation analyses
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amyloid β, phosphorylated tau, and hippocampal volume 
in accordance with the ATN framework10 using data from 
all four cohorts. We subdivided the dataset such that 
model development was done with three of the included 
cohorts and model validation was carried out in the 
remaining cohort. We did this procedure four times, 
using a different cohort for validation each time (ie, four
fold external cross validation). Candidate variables for 
the ATN model included demo graphics (age, sex, and 
MMSE), amyloid β, phosphorylated tau, hippocampal 
volume, and interactions between biomarkers and demo
graphic variables. The ATN model was constructed with 

Cox proportional hazards analysis via a backwards
selection procedure. Effects with p<0·10 were included 
in the model. Last, we assessed the calibration (ie, con
cordance of predicted with observed outcome) of the 
models by superimposing observed and expected survival 
predicted by the models. To this end, we defined four risk 
groups on the basis of the prog nostic index of the final 
models: good prognosis (>84th percentile), fairly good 
prognosis (50–84th percentile), fairly poor prognosis 
(16–50th percent ile), and poor prognosis (<16th percentile). 
Observed progression was calculated by KaplanMeier. A 
detailed description of these steps can be found in the 
appendix (pp 10–12). Analyses were done in STATA SE 14 
and were based on complete cases; therefore, the number 
of patients varies across models.

The final models were used to create a simple spread
sheet calculator. In this calculator, we used the base line 
survival functions that were derived from the final models 
to estimate probabilities of progression within 1, 3, and 
5 years. The spreadsheet calculator can be pro vided by the 
authors on request, with its clinical research use illustrated 
by two case studies.

Role of the funding source
The funders of this study had no involvement in study 
design, data collection, data analysis, data interpretation, 
or writing of the report. The corresponding author had 
full access to all the data in the study and had final 
responsibility for the decision to submit for publication.

Results
We included all 2611 participants in the four cohorts 
(figure 1), with mean age 70 years (SD 8), mean MMSE of 
27 (SD 2), and of whom 1153 (44%) were female (table 2). 
During a mean of 3 years (SD 2) of followup, 1007 (39%) 
of the participants progressed to dementia. We found no 
heterogeneity between the cohorts in the baseline hazard 
and baseline survivor function (data not shown).

The pooled Harrell’s C statistics for the demographics 
model (0·62, 95% CI 0·59–0·65), hippocampal volume 
model (0·67, 0·62–0·72), and the CSF biomarkers model 
(0·67, 0·64–0·71) were similar to those found in the 
develop ment cohort of the original study (figure 2). For 
Alzheimer’s disease dementia as the outcome of interest, 
the pooled Harrell’s C statistic of the CSF biomarkers 
model is lower than in the original study, indicating 
possible misfit (0·69, 0·65–0·72; appendix p 8).

Reestimating the para meters did not increase model 
fit for the models with dementia as the outcome, both 
with and without centrespecific effects (table 3). For the 
CSF biomarkers model with Alzheimer’s disease demen
tia as the outcome, reestimating the parameters did 
increase model fit (appendix p 9). Inclusion of centre
specific effects did not improve any of the models relative 
to those without centrespecific effects (table 3). Notably, 
inclusion of centrespecific effects did not result in a 
difference in progression probabilities on an individual 

Harrell’s C (95% CI)

Original performance

Development cohort ADC, 

Netherlands

Validation cohort ADNI-2, USA

Current study

ADNI, USA

BioFINDER, Sweden

EMIF, Europe

Pooled estimate

0·59 (0·54–0·64)

0·67 (0·60–0·74)

0·61 (0·56–0·66)

0·60 (0·53–0·67)

0·63 (0·59–0·67)

0·62 (0·59–0·65)
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Figure 2: Performance of previous models
As a reference, the model performance of the original development and 
validation cohort are shown in grey. Pooled estimates of model performance for 
Alzheimer’s disease dementia as a clinical endpoint are shown in the appendix 
(p 8). ADC=Amsterdam Dementia Cohort. ADNI=Alzheimer’s Disease 
Neuroimaging Initiative. CSF=cerebrospinal fluid. EMIF-AD=European Medical 
Information Framework for Alzheimer’s disease.
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level (data not shown). Additional analyses further 
supported this finding, as we found that centrespecific 
effects were not confounded by measurement methods 
for MRI and CSF (appendix pp 10–12). Therefore, we 
favoured models without centrespecific effects to 
increase generalisability. Replacing total tau with phos
phorylated tau in the CSF biomarkers model did not 
affect model performance (table 3).

The validation procedure for our ATN model is shown 
in the appendix (p 13). The main effects of amyloid β, 
phosphorylated tau, hippocampal volume, age, and 
MMSE were retained in our ATN model (p<0·10). 
Moreover, interaction effects between amyloid β and 
phos phoryl  ated tau, amyloid β and age, and phosphoryl
ated tau and MMSE were included (p<0·10). The inter
action between amyloid β and age indicates that the 
prognostic value of amyloid β was stronger in younger 
individuals (table 4). The prognostic value of phosphoryl
ated tau was most pronounced in partici pants with 
higher (normal) amyloid β values and lower (abnormal) 
MMSE values. Harrell’s Cstatistic for the ATN model 
was 0·74 (0·71–0·76). Results for Alzheimer’s dis ease 
dementia as a clinical endpoint are shown in the 
appendix (p 14).

In general, for all models, observed and expected 
survival according to risk groups appear to be similar, 
indicating good calibration (figure 3). For the hippo
campal volume model, visual inspection suggests a 
degree of misfit for longterm predictions (>5 years), as 
the model tends to overestimate survival in the good 
prognosis group and underestimate survival in the poor 
prognosis group. Of note, all models are well calibrated 
up to 5 years of followup.

As all models are well calibrated up to 5 years of follow
up, we updated the models to provide 5year risk 
estimates in addition to the 1year and 3year risk estim
ates calculated in the original study.4 A spreadsheet cal
culator can be provided by the authors on request 
(appendix p 16).

Discussion
We have constructed and validated biomarkerbased 
models, including an ATN model, to provide predictions 
for dementia in individuals with MCI. We have shown 
that the models have strong external validity across con
tinents and memory clinic cohorts. Moreover, the models 
accommodate different assays, which further increases 
their generalisability. The models can be used to extract 
individually tailored prognostic information from the 
tests done in the diagnostic setup. We have created a 
spreadsheet calculator to this effect, illustrated by two 
case studies (panel). This individually tailored prognostic 
information sets up the first crucial steps on the road 
towards a precision medicine approach.

Our study has important clinical implications. Patients 
and caregivers have become increasingly assertive in their 
need for prognostic information. In clinical practice, 

however, risk communication for individuals with MCI is 
only sparsely observed and, if communicated, is pro
vided mostly as group averages: ie, that being an individual 
with MCI means that the risk of progression to dementia 
is 50% risk. With biomarker results available, this 
50–50 situation for most individuals is not true. With 
abnormal biomarkers, the risk of progression might be 
higher than 50%, whereas with normal biomarkers, this 
risk can be far lower than 50%, which could provide 
reassurance to individuals with normal biomarkers. 
With our validated, biomarkerbased prediction models, a 
prognosis for an individual can be estimated in the context 
of their own characteristics, showing that precision med
icine for Alzheimer’s disease might be on the horizon. 
The models are easy to use and a calculator (simple 
Microsoft Excel sheet) for academic use can be provided 
by the authors upon request. To further facilitate its use, 
we have incorporated the models in an easytouse online 
tool, ADappt.26

However, there are also arguments against the dis
closure of risk in clinical practice. A review27 on the 
disclosure of amyloid PET results in predementia 
showed that these arguments are to a large extent theor
eti cal in nature and relate mostly to the principle of 

Pooled estimates of 
original parameters

Refitted parameters 
without 
centre-specific 
effects

Refitted parameters 
with centre-specific 
effects

Demographics model 0·62 (0·59–0·65) 0·63 (0·61–0·65) 0·65 (0·64–0·68)

Hippocampal volume model 0·67 (0·62–0·72) 0·69 (0·67–0·71) 0·69 (0·67–0·72)

CSF biomarkers model 0·67 (0·64–0·71) 0·72 (0·68–0·74) 0·72 (0·70–0·74)

CSF biomarkers model with 
phosphorylated tau

NA 0·72 (0·70–0·74) 0·72 (0·69–0·74)

Data are Harrell’s C statistic (95% CI). Outcome was progression to any type of dementia. Model performances of the 
models for Alzheimer’s disease dementia as the clinical endpoint are shown in the appendix (p 9). NA=not applicable.

Table 3: Harrell’s C statistic of previous models

Partial regression coefficients (95% CI)

Amyloid β −0·5187 (−0·633 to −0·405)

Phosphorylated tau 0·6207 (0·439 to 0·802)

Hippocampal volume −0·4164 (−0·516 to −0·317)

Age −0·0065 (−0·020 to 0·007)

MMSE −0·1107 (−0·151 to −0·070)

Amyloid β*phosphorylated tau 0·1772 (−0·024 to 0·378)

Amyloid β*age 0·0166 (−0·002 to 0·035)

Phosphorylated*MMSE 0·0928 (0·019 to 0·167)

Harrell’s C of the ATN model is 0·74 (95% CI 0·71–0·76). Model is based on 
cross-validated estimates from all cohorts. ATN model for Alzheimer’s disease 
dementia as a clinical endpoint is shown in the appendix (p 14). ATN=amyloid, 
tau, and neurodegeneration. MMSE=Mini-Mental State Examination. 
*denotes interaction term. 

Table 4: Partial regression coefficients of the ATN model

For more on ADappt see 
https://www.alzheimercentrum.
nl/professionals/adappt-contact

https://www.alzheimercentrum.nl/professionals/adappt-contact
https://www.alzheimercentrum.nl/professionals/adappt-contact
https://www.alzheimercentrum.nl/professionals/adappt-contact
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nonmaleficence (ie, do no harm). Empirical evidence is 
largely lacking and the effect on psychological harm is 
not known. In a previous ABIDE study, patients and 
caregivers expressed their need for risk communication 
in early phases of Alzheimer’s disease and anxiety or 
uncertainty did not increase after disclosure of amyloid 
PET.3,28 These findings suggest that models such as those 
developed in our study could conceivably be used in 
clinical practice. Nonetheless, before this type of model 
could be implemented in clinical practice, there are some 
important next steps to take, particularly to determine 
clinical utility. In the current study, we used retrospective 
data to construct the models. As a first next step, the 
models should be evaluated prospectively, ideally in a 
phase 3 randomised controlled trial. This trial should 
provide answers on the clinical utility of the models, 
particularly if their use affects participants’ understand
ing, emotional wellbeing, and behaviour (eg, lifestyle 
changes).

In parallel, studies should focus on the optimal way to 
disclose risks to individuals without dementia, and it is 
conceivable that clinicians should receive training on 
how best to disclose this type of probabilistic information. 
Moreover, before initiating biomarker testing, it is of 
utmost importance that realistic expectations are set 
regarding what kind of results can be anticipated. 
Another option would be for the risk prediction models 
to be used before initiating biomarker testing. By filling 
in hypothetical biomarker results and comparing these 
to the results of the demographics model, the clinician 
can evaluate whether these results would add prognostic 
value. The clinician could also engage the patient and 
caregiver in this discussion on different biomarker scen
arios and potential outcomes. In this light, the models 
could serve as a decision support tool and could even 
enhance shared decision making.

We included data from multiple singlecentre and 
multicentre cohorts, both from Europe and the USA. 

A Demographics model
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Figure 3: Calibration of biomarker-based models
Observed progression is analysed by Kaplan-Meier whereas predicted progression is analysed with Cox models. Findings are based on data from all four cohorts. 
Calibration of model performance for Alzheimer’s disease dementia as a clinical endpoint is shown in the appendix (p 15). ATN=amyloid, tauopathy, and 
neurodegeneration.
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Although we did not find heterogeneity in the baseline 
hazard and baseline survivor function, differences 
inevitably exist between cohorts. For that reason, we 
thoroughly tested for centrespecific effects. We found 
that adding centrespecific effects did not improve the 
performance of the models, nor did it result in a dif
ference in progression probabilities on an individual 
level. According to the principle of parsimony, a model 
without centrespecific effects is preferable, as this allows 
the clinician to use the model without further adjusting it 
to their own memory clinic. Moreover, this indicates that 
our models are also applicable for people with MCI in 
memory clinics that were not included in the develop
ment or validation phase of our study. Our results 
suggested that in the original CSF biomarkers model, the 
parameters of amyloid β and total tau were overestimated, 
leading to less optimal model performance in other 
cohorts. Reestimating the parameters resulted in an 
increase in model performance. As a measure of amyloid, 
we used CSF concentrations rather than amyloid PET. 
Although of interest, amyloid PET is currently less often 
used in clinical practice and is usually evaluated in a 
dichotomous fashion, whereas in the current models we 
include all biomarkers as continuous measures, with the 
objective to make it readily available for clinicians. We 
developed amyloid PETbased models in an earlier 
study,29 however, and are therefore confident that results 
would generalise to amyloid PET as well. In our updated 
models, we replaced total tau by phosphorylated tau to 
improve alignment with the latest NIAAA criteria.10 
Because CSF total tau and phosphorylated tau are very 
highly correlated, this replacement did not influence the 
model performance. It could be debated whether APOE 
would have been a helpful addition to the models. 
Although APOE ε4 is the strongest genetic risk factor for 
Alzheimer’s disease, we decided not to include this 
genetic characteristic because it is currently not used in 
clinical practice and, likewise, is not mentioned in any of 
the diagnostic guidelines. Of note, we have previously 
found that including APOE ε4 status as an additional 
variable in biomarkerbased models to predict dementia 
in MCI did not increase prognostic performance or alter 
the predictions on an individual level.29

The recently launched NIAAA research framework 
states that, by coding research participants according to 
the ATN system, the field moves in the direction of 
precision medicine.10 This coding system highly depends 
on cutoff values because a patient is coded as either 
positive or negative for a specific biomarker. As a con
sequence of this dichotomy, the ATN system com prises 
eight categories. For clinical practice, the use of eight 
categories might be complex. Simultaneously, reality 
might be even more complicated than these eight 
categories as the dichotomisation does not include infor
ma tion on extent of abnormality. In this study, we present 
a model in which ATN biomarkers are simul taneously 
considered, yet can be entered into the model as 

continuous variables, to yield risk estimation of disease 
progression to dementia in individuals with MCI. By 
doing so, every combination is possible and maximum 
information from each biomarker is exploited. To further 
foster clinical usefulness, our models provide probabilities 
of progression within a specific time frame, while taking 
patient characteristics into account. The NIAAA coding 
scheme does not provide this type of information yet. 
From risk communication literature, we know that a 
numerical format of risk communication is preferred 
above verbal formats (high, intermediate, low), because 
verbal formats are sensitive to a high degree of variability 
in interpretation.30 Accompanying the risk estimate with a 
time frame is considered best practice, ideally with a 
visual representation.30

Our current models have been updated to allow the use 
of raw values of different platforms for CSF biomarkers 
and two widely used methods of hippocampal volume 
calculation, further promoting generalisability. With 
regards to CSF, the field is currently shifting away from 
manual assays such as Luminex xMAP and Innotest 
ELISA towards automated platforms such as Elecsys and 
Lumipulse. In the current study, we bridged Innotest 
values to Elecsys values.31 We used the same method to 
bridge Luminex to Elecsys values. For the calculation of 
brain volumes, there is more variation in software. We 
were able to bridge FSL FIRST data to Freesurfer. These 
two software packages are widely used, easily available, 
and have a clear pipeline.

A potential limitation of bridging different types of data 
is that it might cause additional noise on the risk 
prediction. However, this did not negatively affect the 
prognostic performance. Another limitation is that we 
used complete cases only in the analyses, resulting in 

Panel: Spreadsheet calculator

The spreadsheet calculator allows the user to select which platform was used for CSF 
analysis (Innotest, Luminex, or Elecsys) and which method was used to calculate 
hippocampal volume (FSL FIRST or Freesurfer). After selecting the appropriate methods 
for CSF and MRI, clinicians can easily fill in patient-specific values. 

For example, for a 62-year-old woman with MCI and an MMSE of 26, without knowledge 
of biomarker results, the progression probabilities to dementia are 11% (95% CI 10–12) in 
1 year, 39% (36–42) in 3 years, and 57% (52–61) in 5 years. When both MRI and CSF data 
are available and with abnormal levels (amyloid β = 225, phosphorylated tau = 90 [CSF 
measured with Innotest], and hippocampal volume=6·2 [calculated with Freesurfer 
software]), the progression probabilities change to 40% (33–48) in 1 year, 88% (82–94) in 
3 years, and 97% (94–99) in 5 years. 

By contrast, a 62-year-old man with MCI and an MMSE of 29, without knowledge of 
biomarker results, has progression probabilities to dementia of 7% (95% CI 6–8) in 1 year, 
26% (23–29) in 3 years, and 40% (44–35) in 5 years. With normal biomarkers (amyloid β 
=1264, phosphorylated tau = 12 [measured with Elecsys], and hippocampal volume = 9·8 
[calculated with Freesurfer]), he would have progression probabilities of 1% [1–2] in 
1 year, 5% (4–7) in 3 years, and 8% (6–11) in 5 years. 

MCI=mild cognitive impairment. MMSE=Mini-Mental State Examination
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sample size variations, and that might introduce a degree 
of bias.24 Lastly, the cohorts used in this study inevitably 
differed not only in the definition of the predict ors 
but also in the outcome of Alzheimer’s disease dementia. 
In validating prediction models, such differences might 
be intentional for two reasons.24 First, for our models to 
have clinical usability, they should be aligned with clinical 
practice. And in clini cal practice, differences in the 
definition of Alzheimer’s disease dementia are inevi
table. Second, using different definitions in the outcome 
measure of our analysis will provide information on 
whether the models can be extrapolated to different 
populations.

Among the strengths of our study are the size and 
heterogeneity of the cohorts used. Moreover, predict
ion models, especially when constructed with Cox pro
portional hazards analysis, are often not validated to the 
extent that we did.11 We thoroughly tested for centre
specific effects and concluded that adjustment for centre 
could safely be omitted. This finding greatly enhances the 
generalisability and therefore the clinical applicability of 
our models. Of note, the models are of relevance for 
memory clinics and, perhaps, in a trial setting, and thus 
cannot be extrapolated to other settings, such as, for 
example, general practitioners. For risk stratification 
purposes, discrimination between those who will and 
those who will not progress to dementia is clearly the key 
indicator of model success or failure. But for a model to 
be used in clinical practice and to provide probabilistic 
information, calibration (ie, concordance between pre
dicted and observed outcome) is very important. In the 
evaluation of prediction models, this aspect is often 
neglected. Specifically for Cox models, studies rarely 
report on the baseline survival function, which is required 
for calibration. We do report on the baseline survival 
function (appendix p 16), which we used to create the 
spreadsheet calculator. Because we ultimately want our 
study to support clinical practice, we did a strict type of 
calibration assessment, leading us to conclude that the 
models are well calibrated for predictions well beyond 
5 years.11

In conclusion, we have constructed and validated 
biomarkerbased models for prediction of progression to 
dementia in individuals with MCI. We have shown the 
generalisability and robustness of the predictions and the 
models are freely available upon request. The models in 
this study could facilitate a more timely and accurate 
diagnosis, which is of high importance at the individual 
level even in the absence of specific therapies, as this is 
the starting point to plan and organise care. Prospective 
validation will be needed, preferably in a phase 3 
randomised controlled trial.
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